Course-Level Assessment Matrix This table shows how specific Electrical Engineering Technology (ELT) courses are used to support ABET Student Outcomes 1 to 5. The courses are assessed every semester. Assessment results are used in a continuous improvement process to make modifications to the program | ABET Student
Outcome | Summary | ELT 103 | ELT 110 | ELT 112 | ELT 113 | ELT 115 | ELT 203 | ELT 213 | ELT 214 | ELT 215 | ELT 217 | ELT 220 | ELT 240 | |-------------------------|---------------------------------------|---|---|--|---|--|---|---|---|---|---|--|---| | | 1 Apply Knowledge | Students will apply computer
programming techniques to
solve a well-defined
engineering problem. | | Students will apply the techniques of circuit analysis to solve for voltages, currents, and powers in a series, parallel, or series/parallel resistive circuit | | Students will apply the
s techniques of circuit analysis
to solve for the AC voltages
and currents in a reactive
circuit | | Students will use analog design techniques (input an output impedances, etc.) to analyze the behavior of a multi-stage amplifier. | Students will apply
dd knowledge of logic gates to
analyze the behavior of a
digital combinational circuit | | | | Students will apply
knowledge of
communication circuits and
mathematical modeling to
analyze circuit
behavior(voltage, current,
noise, gain, etc.). | | | 2 Design Solutions | Students will design a
spreadsheet to solve a well-
defined technical problem | Students will design the
layout of a circuit on a
solderless breadboard | | | | Students will use digital design techniques to design and construct an electronic control circuit | Students will use analog
design techniques (op amp
golden rules, amplifier
topologies, etc.) to design ar
operational amplifier circuit | | Tables, Boolean Equations,
Boolean Algebra, K-maps, | design techniques (Truth
Tables, Boolean Equations,
Boolean Algebra, K-maps, | to program a
microcomputer and design
the associated hardware
needed to solve a well- | Students will apply
knowledge of
communication circuits and
mathematical modeling in
the design of an electronic
communications circuit. | | | 3 Communicate Ideas/Use
Literature | Students will use graphical methods to convey information | Students will interpret
technical literature
(electrical schematics) to
complete a project | Students will write a lab
report that integrates
written and graphical
information | Students will write a lab report that integrates written and graphical information | Students will write a lab
report that integrates
written and graphical
information | Students will provide an ora
presentation of their
technical findings. | Students will write a lab
report that integrates a
written test procedure | | Students will provide an oral
presentation of their
technical findings. | | Students will provide an oral presentation of their technical findings. | Students will write a lab report that integrates written and graphical information | | | Conduct Tests and Measurements | | | (voltage and current | Students will buid an amplifier and test its operation (DC operating point, gain, etc) using standard bench-top equipment | Students will buid a reactive
circuit and test its operation
at different frequencies
using standard bench-top
equipment | | Students will construct a circuit and/or use computer simulation software to test their designs and compare the results to theoretical values. | | simulation software to test
their designs and compare | combinational or sequential
logic circuit and test its
operation using standard | Students will use standard
bench-top equipment to test
the operation of their
software and hardware
designs. | Students will use computer simulation software to test electronic communication circuit designs and compare the simulation results to theoretical values | | | 5 Work in a Team | | | Students will work in teams to solve a well-defined engineering problem. | Students will work in teams to solve a well-defined engineering problem. | Students will work in teams to solve a well-defined engineering problem. | Students will work in teams to solve a well-defined engineering problem. | | Students will work in teams to solve a well-defined engineering problem. | | | Students will work in teams to solve a well-defined engineering problem. | |